Задачи на движение

позволяющую найти путь S , пройденный за время t телом, движущимся с постоянной скоростью v .

Сразу же сделаем важное

Замечание 1 . Единицы измерения величин S , t и v должны быть согласованными. Например, если путь измеряется в километрах, а времяв часах, то скорость должна измеряться в км/час.

В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости , которая вычисляется по формуле

Например, если тело в течение времени t1 двигалось со скоростью v1 , в течение времени t2 двигалось со скоростью v2 , в течение времени t3 двигалось со скоростью v3 , то средняя скорость

Задача 1 . По расписанию междугородный автобус должен проходить путь в 100 километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на 25 минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на 20 км/час. Какова скорость автобуса по расписанию?

Решение . Обозначим буквой v скорость автобуса по расписанию и будем считать, что скорость v измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

– время движения автобуса по расписанию (в часах);

– время, за которое автобус проехал первую половину пути (в часах);

v + 20 – скорость автобуса во второй половине пути (в км/час);

– время, за которое автобус проехал вторую половину пути (в часах).

В условии задачи дано время остановки автобуса – 25 минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 2. (МИОО) Первый час автомобиль ехал со скоростью 120 км/час, следующие три часа – со скоростью 105 км/час, а затем три часа – со скоростью 65 км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

Решение . Воспользовавшись формулой (2), получаем

Ответ . 90 км/час.

Задача 3 . Первую половину пути поезд шел со скоростью 40 км/час, а вторую половину пути – со скоростью 60 км/час. Найдите среднюю скорость поезда на протяжении всего пути.

Решение . Обозначим буквой S длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

– время, за которое поезд прошел первую половину пути, выраженное в часах;

– время, за которое поезд прошел вторую половину пути, выраженное в часах.

Следовательно, время, за которое поезд прошел весь путь, равно

В соответствии с формулой (1) средняя скорость поезда на протяжении всего пути

Ответ . 48 км/час.

Замечание 2 . Средняя скорость поезда в задаче 3 равна 48 км/час, а не 50 км/час, как иногда ошибочно полагают, вычисляя среднее арифметическое чисел (скоростей) 40 км/час и 60 км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по формуле (1).

Движение по реке. Скорость течения реки

В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела ( скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде ) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела и скорости течения реки.

Задача 4 . Моторная лодка прошла по течению реки 14 км, а затем 9 км против течения, затратив на весь путь 5 часов. Скорость лодки в стоячей воде 5 км/час. Найдите скорость течения реки.

Решение . Обозначим буквой v скорость течения реки и будем считать, что скорость v измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

5 + v – скорость, с которой лодка шла по течению реки (в км/час);

– время движения лодки по течению реки (в часах);

5 – v – скорость, с которой лодка шла против течения реки (в км/час);

– время движения лодки против течения реки (в часах);

Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути 5 часов:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки 34 км и 39 км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти 75 километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

Решение . Обозначим vс (км/ч) скорость лодки в стоячей воде и обозначим vр (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

Если ввести обозначение

то, воспользовавшись формулой

перепишем уравнение (3) в виде

Умножая уравнение (4) на vр , получим

По смыслу задачи первый корень должен быть отброшен.

Движение по кольцевым трассам

Задача 6. (www.reshuege.ru) Из пункта A круговой трассы длиной 46 км выехал велосипедист, а через 20 минут из пункта A следом за велосипедистом отправился мотоциклист. Через 5 минут после отправления мотоциклист догнал велосипедиста в первый раз, а еще через 46 минут после этого мотоциклист догнал велосипедиста во второй раз. Найдите скорости велосипедиста и мотоциклиста.

Решение . К тому моменту, когда мотоциклист в первый раз догнал велосипедиста, мотоциклист ехал 5 минут, а велосипедист ехал 25 минут, причем проехали они один и тот же путь. Отсюда вытекает, что скорость мотоциклиста в 5 раз больше скорости велосипедиста.

Таким образом, обозначив буквой v (км/час) скорость велосипедиста, получаем, что скорость мотоциклиста равна 5v (км/час).

В условии задачи дано время, прошедшее между двумя последовательными встречами мотоциклиста и велосипедиста, – 46 минут. Это время необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Изобразим данные задачи, касающиеся движения мотоциклиста и велосипедиста между первой и второй встречами, на рисунке 6.

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

Поскольку за время часа, прошедшее от момента первой встречи до момента второй встречи, мотоциклист проехал 46 км (вся круговая трасса) плюс путь, который проехал велосипедист за часа, то можно составить следующее уравнение:

Решая это уравнение, находим скорость велосипедиста:

Ответ . Скорость велосипедиста 15 км/час, скорость мотоциклиста 75 км/час.

Задача 7 . На дороге, представляющей собой окружность длиной 60 км, пункты A и B являются диаметрально противоположными точками. Велосипедист выехал из пункта A и сделал два круга. Первый круг он прошел с постоянной скоростью, после чего уменьшил скорость на 5 км/час. Время между двумя прохождениями велосипедиста через пункт B равно 5 часам. Найти скорость, с которой велосипедист прошел первый круг.

Решение . Для определенности будем считать, что велосипедист двигался по кругу по часовой стрелке и рассмотрим рисунок 7.

Читайте также:  30 автобус уфа изменился маршрут

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

Если обозначить буквой v (км/час) скорость, с которой велосипедист прошел первый круг, то скорость велосипедиста на втором круге будет равна v – 5 (км/час), и можно составить уравнение

Решая это уравнение, находим скорость велосипедиста на первом круге:

Поскольку скорость велосипедиста на первом круге больше, чем 5 км/час, то первый корень должен быть отброшен.

Ответ . 15 км/час.

Желающие ознакомиться с примерами решения различных задач по теме «Проценты» и применением процентов в экономике и финансовой математике могут посмотреть разделы нашего справочника «Проценты. Решение задач на проценты», «Простые и сложные проценты. Предоставление кредитов на основе процентной ставки», а также наши учебные пособия «Задачи на проценты» и «Финансовая математика».

Приемы, используемые для решения задач на выполнение работ представлены в разделе нашего справочника «Задачи на выполнение работ».

С примерами решения задач на смеси, сплавы и растворы можно ознакомиться в разделе нашего справочника «Задачи на смеси, сплавы и растворы».

С демонстрационными вариантами ЕГЭ и ОГЭ , опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.

Источник

Физика

где Δ r → — вектор перемещения; ∆ t — интервал времени, за которое это перемещение произошло.

Средняя путевая скорость является скалярной физической величиной и вычисляется по формуле

v s = S общ t общ ,

где S общ = S 1 + S 1 + . + S n ; t общ = t 1 + t 2 + . + t N .

Здесь S 1 = v 1 t 1 — первый участок пути; v 1 — скорость прохождения первого участка пути (рис. 1.18); t 1 — время движения на первом участке пути и т.п.

Пример 7. Одну четверть пути автобус движется со скоростью 36 км/ч, вторую четверть пути — 54 км/ч, оставшийся путь — со скоростью 72 км/ч. Рассчитать среднюю путевую скорость автобуса.

Решение. Общий путь, пройденный автобусом, обозначим S :

S 1 = S /4 — путь, пройденный автобусом на первом участке,

S 2 = S /4 — путь, пройденный автобусом на втором участке,

S 3 = S /2 — путь, пройденный автобусом на третьем участке.

Время движения автобуса определяется формулами:

    на первом участке ( S 1 = S /4) —

t 1 = S 1 v 1 = S 4 v 1 ;

t 2 = S 2 v 2 = S 4 v 2 ;

t 3 = S 3 v 3 = S 2 v 3 .

Общее время движения автобуса составляет:

t общ = t 1 + t 2 + t 3 = S 4 v 1 + S 4 v 2 + S 2 v 3 = S ( 1 4 v 1 + 1 4 v 2 + 1 2 v 3 ) .

Вычисление средней путевой скорости автобуса произведем по формуле

v s = S общ t общ = S S ( 1 4 v 1 + 1 4 v 2 + 1 2 v 3 ) =

= 1 ( 1 4 v 1 + 1 4 v 2 + 1 2 v 3 ) = 4 v 1 v 2 v 3 v 2 v 3 + v 1 v 3 + 2 v 1 v 2 .

Расчет дает значение средней путевой скорости:

v s = 4 ⋅ 36 ⋅ 54 ⋅ 72 54 ⋅ 72 + 36 ⋅ 72 + 2 ⋅ 36 ⋅ 54 = 54 км/ч.

Пример 8. Пятую часть времени городской автобус тратит на остановки, остальное время он движется со скоростью 36 км/ч. Определить среднюю путевую скорость автобуса.

Решение. Общее время движения автобуса на маршруте обозначим t :

t 1 = t /5 — время, затраченное на остановки,

t 2 = 4 t /5 — время движения автобуса.

Путь, пройденный автобусом:

    за время t 1 = t /5 —

S 1 = v 1 t 1 = 0,

так как скорость автобуса v 1 на данном временном интервале равна нулю ( v 1 = 0);

    за время t 2 = 4 t /5 —

S 2 = v 2 t 2 = v 2 4 t 5 = 4 5 v 2 t ,

где v 2 — скорость автобуса на данном временном интервале ( v 2 = = 36 км/ч).

Общий путь автобуса составляет:

S общ = S 1 + S 2 = 0 + 4 5 v 2 t = 4 5 v 2 t .

Вычисление средней путевой скорости автобуса произведем по формуле

v s = S общ t общ = 4 5 v 2 t t = 4 5 v 2 .

Расчет дает значение средней путевой скорости:

v s = 4 5 ⋅ 36 = 30 км/ч.

Пример 9. Уравнение движения материальной точки имеет вид x ( t ) = (9,0 − 6,0 t + 2,0 t 2 ) м, где координата задана в метрах, время — в секундах. Определить среднюю путевую скорость и величину средней скорости перемещения материальной точки за первые три секунды движения.

Решение. Для определения средней скорости перемещения необходимо рассчитать перемещение материальной точки. Модуль перемещения материальной точки в интервале времени от t 1 = 0 с до t 2 = 3,0 с вычислим как разность координат:

| Δ r → | = | x ( t 2 ) − x ( t 1 ) | ,

x ( t 1 ) = 9,0 − 6,0 t 1 + 2,0 t 1 2 = 9,0 − 6,0 ⋅ 0 + 2,0 ⋅ 0 2 = 9,0 м;

x ( t 2 ) = 9,0 − 6,0 t 2 + 2,0 t 2 2 = 9,0 − 6,0 ⋅ 3,0 + 2,0 ⋅ ( 3,0 ) 2 = 9,0 м.

Подстановка значений в формулу для вычисления модуля перемещения дает:

| Δ r → | = | x ( t 2 ) − x ( t 1 ) | = 9,0 − 9,0 = 0 м.

Таким образом, перемещение материальной точки равно нулю. Следовательно, модуль средней скорости перемещения также равен нулю:

| v → r | = | Δ r → | t 2 − t 1 = 0 3,0 − 0 = 0 м/с.

Для определения средней путевой скорости нужно рассчитать путь, пройденный материальной точкой за интервал времени от t 1 = 0 с до t 2 = 3,0 с. Движение точки является равнозамедленным, поэтому необходимо выяснить, попадает ли точка остановки в указанный интервал.

Для этого запишем закон изменения скорости материальной точки с течением времени в виде:

v x = v 0 x + a x t = − 6,0 + 4,0 t ,

где v 0 x = −6,0 м/с — проекция начальной скорости на ось Ox ; a x = = 4,0 м/с 2 — проекция ускорения на указанную ось.

Найдем точку остановки из условия

τ ост = v 0 a = 6,0 4,0 = 1,5 с.

Точка остановки попадает во временной интервал от t 1 = 0 с до t 2 = 3,0 с. Таким образом, пройденный путь вычислим по формуле

где S 1 = | x ( τ ост ) − x ( t 1 ) | — путь, пройденный материальной точкой до остановки, т.е. за время от t 1 = 0 с до τ ост = 1,5 с; S 2 = | x ( t 2 ) − x ( τ ост ) | — путь, пройденный материальной точкой после остановки, т.е. за время от τ ост = 1,5 с до t 1 = 3,0 с.

Рассчитаем значения координат в указанные моменты времени:

x ( t 1 ) = 9,0 − 6,0 t 1 + 2,0 t 1 2 = 9,0 − 6,0 ⋅ 0 + 2,0 ⋅ 0 2 = 9,0 м;

x ( τ ост ) = 9,0 − 6,0 τ ост + 2,0 τ ост 2 = 9,0 − 6,0 ⋅ 1,5 + 2,0 ⋅ ( 1,5 ) 2 = 4,5 м;

x ( t 2 ) = 9,0 − 6,0 t 2 + 2,0 t 2 2 = 9,0 − 6,0 ⋅ 3,0 + 2,0 ⋅ ( 3,0 ) 2 = 9,0 м.

Значения координат позволяют вычислить пути S 1 и S 2 :

S 1 = | x ( τ ост ) − x ( t 1 ) | = | 4,5 − 9,0 | = 4,5 м;

S 2 = | x ( t 2 ) − x ( τ ост ) | = | 9,0 − 4,5 | = 4,5 м,

а также суммарный пройденный путь:

S = S 1 + S 2 = 4,5 + 4,5 = 9,0 м.

Следовательно, искомое значение средней путевой скорости материальной точки равно

v s = S t 2 − t 1 = 9,0 3,0 − 0 = 3,0 м/с.

Пример 10. График зависимости проекции скорости материальной точки от времени представляет собой прямую линию и проходит через точки (0; 8,0) и (12; 0), где скорость задана в метрах в секунду, время — в секундах. Во сколько раз средняя путевая скорость за 16 с движения превышает величину средней скорости перемещения за то же время?

Решение. График зависимости проекции скорости тела от времени показан на рисунке.

Для графического вычисления пути, пройденного материальной точкой, и модуля ее перемещения необходимо определить значение проекции скорости в момент времени, равный 16 с.

Существует два способа определения значения v x в указанный момент времени: аналитический (через уравнение прямой) и графический (через подобие треугольников). Для нахождения v x воспользуемся первым способом и составим уравнение прямой по двум точкам:

t − t 1 t 2 − t 1 = v x − v x 1 v x 2 − v x 1 ,

где ( t 1 ; v x 1 ) — координаты первой точки; ( t 2 ; v x 2 ) — координаты второй точки. По условию задачи: t 1 = 0, v x 1 = 8,0, t 2 = 12, v x 2 = 0. С учетом конкретных значений координат данное уравнение принимает вид:

t − 0 12 − 0 = v x − 8,0 0 − 8,0 ,

При t = 16 с значение проекции скорости составляет

Данное значение можно получить также из подобия треугольников.

    Вычислим путь, пройденный материальной точкой, как сумму величин S 1 и S 2 :

где S 1 = 1 2 ⋅ 8,0 ⋅ 12 = 48 м — путь, пройденный материальной точкой за интервал времени от 0 с до 12 с; S 2 = 1 2 ⋅ ( 16 − 12 ) ⋅ | v x | = 1 2 ⋅ 4,0 ⋅ 8 3 = = 16 3 м — путь, пройденный материальной точкой за интервал времени от 12 с до 16 с.

Суммарный пройденный путь составляет

S = S 1 + S 2 = 48 + 16 3 = 160 3 м.

Средняя путевая скорость материальной точки равна

Читайте также:  Маршрут автобуса калининград краснознаменск

v s = S t 2 − t 1 = 160 3 ⋅ 16 = 10 3 м/с.

    Вычислим значение перемещения материальной точки как модуль разности величин S 1 и S 2 :

S = | S 1 − S 2 | = | 48 − 16 3 | = 128 3 м.

Величина средней скорости перемещения составляет

| v → r | = | Δ r → | t 2 − t 1 = 128 3 ⋅ 16 = 8 3 м/с.

Искомое отношение скоростей равно

v s | v → r | = 10 3 ⋅ 3 8 = 10 8 = 1,25 .

Средняя путевая скорость материальной точки в 1,25 раза превышает модуль средней скорости перемещения.

Источник

Как найти среднюю скорость

Rendered by QuickLaTeX.com

В данной статье рассказано о том, как найти среднюю скорость. Дано определение этого понятия, а также рассмотрено два важных частных случая нахождения средней скорости. Представлен подробный разбор задач на нахождение средней скорости тела от репетитора по математике и физике.

Определение средней скорости

Средней скоростью движения \upsilon_{cp}тела называется отношение пути s, пройденного телом, ко времени t, в течение которого двигалось тело:

\[ \upsilon_{cp} = \frac{s}{t}. \]

Научимся ее находить на примере следующей задачи:

  • Переведем все величины в Международную систему единиц СИ. В этой системе единицей измерения времени является секунда. Следовательно, тело двигалось на первом участке пути в течение t_1 = 3\cdot 60 = 180с, а на втором участке пути в течение t_2 = 7\cdot 60 = 420с.
  • Найдем теперь полный путь, пройденный телом. На первом участке тело прошло s_1 =\upsilon_1 t_1 = 900м пути. На втором участке пути тело прошло s_2 = \upsilon_2 t_2 = 1260м пути. Следовательно, общий пройденный телом путь составляет s = s_1 + s_2 = 2160м.
  • Общее время движения составляет t = t_1+t_2 = 600с. Следовательно, средняя скорость движения тела составляет:
    \upsilon_{cp} = \frac{s}{t} = 3.6м/с.

Обратите внимание, что в данном случае это значение не совпало со средним арифметическим скоростей \upsilon_1и \upsilon_2, которое равно:
\frac{\upsilon_1+\upsilon_1}{2} = 4м/с.

Частные случаи нахождения средней скорости

1. Два одинаковых участка пути. Пусть первую половину пути тело двигалось со скоростью \upsilon_1, а вторую половину пути — со скоростью \upsilon_2. Требуется найти среднюю скорость движения тела.

  • Пусть s— общая длина пройденного пути. Тогда на первом участке пути тело двигалось в течение интервала времени t_1 = \frac{s}{2\upsilon_1}. Аналогично, на втором участке пути тело двигалось в течение интервала времени t_2 = \frac{s}{2\upsilon_2}.
  • Тогда средняя скорость движения равна:

\[ \upsilon_{cp} = \frac{s}{t_1+t_2} = \frac{s}{\frac{s}{2\upsilon_1}+\frac{s}{2\upsilon_2}} = \frac{2\upsilon_1\upsilon_2}{\upsilon_1+\upsilon_2}. \]

2. Два одинаковых интервала движения. Пусть тело двигалось со скоростью \upsilon_1в течение некоторого промежутка времени, а затем стало двигаться со скоростью \upsilon_2в течение такого же промежутка времени. Требуется найти среднюю скорость движения тела.

  • Пусть t— общее время пути. Тогда путь, пройденный телом в течение первой половины времени движения, равен: s_1 = \upsilon_1\frac{t}{2}. Аналогично, путь, пройденный телом в течение второй половины времени движения, равен: s_2 = \upsilon_2\frac{t}{2}.
  • Тогда средняя скорость движения равна:

\[ \upsilon_{cp} = \frac{s_1+s_2}{t} = \frac{\upsilon_1\frac{t}{2}+\upsilon_2\frac{t}{2}}{t} = \frac{\upsilon_1+\upsilon_2}{2}. \]

Здесь мы получили единственный случай, когда средняя скорость движения совпала со средним арифметическим скоростей \upsilon_1и \upsilon_2на двух участках пути.

Решим напоследок задачу из Всероссийской олимпиады школьников по физике, прошедшей в прошлом году, которая связана с темой нашего сегодняшнего занятия.

Тело двигалось t = 20с, и средняя скорость движения \upsilon_{cp}составила 4 м/с. Известно, что за последние t_2 = 4с движения средняя скорость этого же тела \upsilon_{cp2}составила 10 м/с. Определите среднюю скорость тела \upsilon_{cp1}за первые t_1 = 16с движения.

Пройденный телом путь составляет: s = \upsilon_{cp}t = 80м. Можно найти также путь, который прошло тело за последние t_2 = 4с своего движения: s_2 = \upsilon_{cp2}t_2 = 40м. Тогда за первые t_1 = 16с своего движения тело преодолело путь в s_1 = s-s_2 = 40м. Следовательно, средняя скорость на этом участке пути составила:
\upsilon_{cp1} = \frac{s_1}{t_1} = 2.5м/с.

Задачи на нахождение средней скорости движения очень любят предлагать на ЕГЭ и ОГЭ по физике, вступительных экзаменах, а также олимпиадах. Научиться решать эти задачи должен каждый школьник, если он планирует продолжить свое обучение в вузе. Помочь справиться с этой задачей может знающий товарищ, школьный учитель или репетитор по математике и физике. Удачи вам в изучении физики!

Источник

Средняя скорость

При решении этих задач обязательно помним, что средняя скорость может быть найдена только делением всего пути на все время движения, даже если какое-то время объект не двигался (делал остановку). Если путь не задан, то необходимо ввести буквенное обозначение длины пути.

Задача Поезд прошел путь 200 км. В течение времени ч он двигался со скоростью км/ч, затем сделал остановку на время мин. Оставшуюся часть пути он шел со скоростью км/ч. Какова средняя скорость движения поезда?

Путь в этой задаче известен. Значит, осталось определить время движения поезда. Кроме того, известно и время его движения на первом участке, значит, нам осталось определить время движения поезда на последнем кусочке, где он двигался со скоростью км/ч. Нетрудно понять, что длина этого отрезка пути равна 100 км, так как поезд уже преодолел 100 км за первый час. Поэтому

Задача Определить среднюю скорость поезда, если первую половину пути он шел со скоростью км/ч, а вторую половину пути – со скоростью км/ч.

В этой задаче путь неизвестен. Обозначим его . Тогда время движения поезда на первой половине пути

Время движения на второй половине –

Средняя скорость – результат деления всего пути, пройденного поездом, на все время:

Задача Два автомобиля одновременно выехали из Москвы в Петербург. Один автомобиль первую половину пути ехал со скоростью км/ч, а вторую половину – со скоростью км/ч. Другой автомобиль первую половину времени ехал со скоростью км/ч, а вторую – со скоростью км/ч. Какой автомобиль приедет в Петербург раньше?

Если окажется, что средняя скорость одного из автомобилей больше, чем у другого, то он и должен прибыть раньше. Определим среднюю скорость каждого автомобиля. Первый:

Источник

Задачи на движение для 4 класса — формулы и примеры решений

Задачи на движении в одном направлении относятся к одному из трех основных видов задач на движение.
Если два объекта выехали из одного пункта одновременно, то, поскольку они имеют разные скорости, объекты удаляются друг от друга. Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:

Если из одного пункта выехал один объект, а спустя некоторое время в том же направлении вслед за ним выехал другой объект, то они могут как сближаться, так и удаляться друг от друга.
Если скорость объекта, движущегося впереди, меньше движущегося вслед за ним объекта, то второй догоняет первого и они сближаются.
Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:

Если скорость объекта, который идет впереди, больше скорости объекта, который движется следом, то второй не сможет догнать первого и они удаляются друг от друга.
Скорость удаления находим аналогично — из большей скорости вычитаем меньшую:

Задачи на скорость сближения

Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?

Решение :

Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалится от города на:

Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:

60 — 40 = 20 (км/ч) – это скорость сближения автомобилей

Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:

Решение задачи по действиям можно записать так:

Читайте также:  Волгоград аэропорт центр автобус

1) 40 · 4 = 160 (км) – расстояние между автомобилями

2) 60 — 40 = 20 (км/ч) – скорость сближения автомобилей

Ответ: Второй автомобиль догонит первый через 8 часов.

Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?

Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:

Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:

Решение задачи по действиям можно записать так:

1) 5 — 4 = 1 (км/ч) – это скорость сближения пешеходов

Ответ: Через 5 часов второй пешеход догонит первого.

Из одного села в одном направлении одновременно выехали два велосипедиста. Скорость одного из них — 15 км/ч, скорость другого — 12 км/ч. Какое расстояние будет через ними через 4 часа?

Решение:

1) 15-12=3 (км/ч) скорость удаления велосипедистов

2) 3∙4=12 (км) такое расстояние будет между велосипедистами через 4 часа.

Ответ: Через 4 часа расстояние между велосипедистами составит 12 км.

Задача 4

Из села на станцию одновременно вышел пешеход и выехал велосипедист. Через 2 часа велосипедист опережал пешехода на 12 км. Найти скорость пешехода, если скорость велосипедиста 10 км/ч.

Решение:

1) 12:2=6 (км/ч) скорость удаления велосипедиста и пешехода

2) 10-6=4 (км/ч) скорость пешехода.

Ответ: Скорость пешехода составляет 4 км/ч.

Задачи на скорость удаления

  1. Чему равна скорость удаления между автомобилями?
  2. Какое расстояние будет между автомобилями через 3 часа?
  3. Через сколько часов расстояние между ними будет 200 км?

Решение:

Сначала узнаем скорость удаления автомобилей друг от друга, для этого вычтем из большей скорости меньшую:

Каждый час автомобили отдаляются друг от друга на 40 км. Теперь можно узнать сколько километров будет между ними через 3 часа, для этого скорость удаления умножим на 3:

Чтобы узнать через сколько часов расстояние между автомобилями станет 200 км, надо расстояние разделить на скорость удаления:

  1. Скорость удаления между автомобилями равна 40 км/ч.
  2. Через 3 часа между автомобилями будет 120 км.
  3. Через 5 часов между автомобилями будет расстояние в 200 км.

Движение навстречу друг другу

Если два объекта движутся навстречу друг другу, то они сближаются. Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:

Скорость сближения больше, чем скорость каждого из них.

Из поселка и города навстречу друг другу, одновременно выехали два автобуса. Один автобус до встречи проехал 100 км со скоростью 25 км/час. Сколько километров до встречи проехал второй автобус, если его скорость 50 км/час.

1) 100 : 25 = 4 (часа ехал один автобус)

2) 50 * 4 = 200

Решение в виде выражения: 50 * (100 : 25) = 200

Ответ: второй автобус проехал до встречи 200 км.

1) 25 + 20 = 45 (сумма скоростей теплоходов)

Решение в виде выражения:90 : (20 + 25) = 2

Ответ: Теплоходы встретятся через 2 часа.

От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?

1) 63 * 4 = 252 (прошел 1 поезд)

2) 564 — 252 =312 (прошел 2 поезд)

Решение в виде выражения (63 * 4 — 252) : 4 = 78

Ответ: Скорость второго поезда 78 км/час.

Задача 4

Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?

Решение:

1) 12+10=22 (км/ч) скорость сближения велосипедистов

2) 22∙3=66 (км) было между велосипедистами в начале пути.

Ответ: Расстояние между велосипедистами в начале пути было 66 км.

Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого — 60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?

Решение:

1) 60+50=110 (км/ч) скорость сближения поездов

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: Поезда встретятся через 4 часа.

Движение в противоположных направлениях

Если два объекта движутся в противоположных направлениях, то они удаляются. Чтобы найти скорость удаления, надо сложить скорости этих объектов:

Скорость удаления больше скорости любого из них.

Из поселка вышли одновременно в противоположных направлениях два пешехода. Средняя скорость одного пешехода – 5 км/ч, другого – 4 км/ч. Через сколько часов расстояние между ними будет 27 км ?

Чтобы найти время движения пешеходов, нужно знать расстояние и скорость пешеходов. Мы знаем, что за каждый час один пешеход удаляется от поселка на 5 км, а другой пешеход удаляется от поселка на 4 км. Можем найти их скорость удаления.

Мы знаем скорость удаления и знаем все расстояние – 27 км. Можем найти время, через которое пешеходы удалятся друг от друга на 27 км, для этого нужно расстояние разделить на скорость.

Ответ: Через три часа расстояние между переходами будет 27 км.

Из поселка вышли одновременно в противоположных направлениях два пешехода. Через 3 часа расстояние между ними было 27 км. Первый пешеход шел со скоростью 5 км/ч. С какой скоростью шел второй пешеход ?

Чтобы узнать скорость второго пешехода, надо знать расстояние, которое он прошел, и его время в пути. Чтобы узнать, какое расстояние прошел второй пешеход, надо знать, какое расстояние прошел первый пешеход и общее расстояние. Общее расстояние мы знаем. Чтобы найти расстояние, которое прошел первый пешеход, надо знать его скорость и его время в пути. Средняя скорость движения первого пешехода – 5 км/ч, его время в пути – 3 часа. Если среднюю скорость умножить на время в пути, получим расстояние, которое прошел пешеход:

Мы знаем общее расстояние и знаем расстояние, которое прошел первый пешеход. Можем теперь узнать, какое расстояние прошел второй пешеход.

Теперь мы знаем расстояние, которое прошел второй пешеход, и время, проведенное им в пути. Можем найти его скорость.

Ответ: Скорость второго пешехода – 4 км/ч.

Товарный и пассажирский поезда движутся в противоположных направлениях. Скорость товарного 45 км/ч, скорость пассажирского — 70 км/ч. Сейчас между ними 20 км. Какое расстояние будет между ними через 2 часа ?

1) 70+45=115 (км/ч) скорость удаления поездов

2) 115∙2=230 (км) пройдут поезда вместе за 2 часа

3) 230+20=250 (км) такое расстояние между поездами будет через 2 часа.

Ответ: Через 2 часа расстояние между поездами составит 250 км.

Из одного пункта одновременно в противоположных направлениях выехали два мотоциклиста. Скорость одного из них — 60 км/ч, скорость другого — 40 км/ч. Через какое время расстояние между ними станет равным 300 км?

1) 60+40=100 (км/ч) скорость удаления мотоциклистов

2) 300:100=3 (ч) через такое время расстояние между ними будет 300 км.

Ответ: Расстояние между мотоциклистами станет 300 км через 3 часа.

Источник

Найти среднюю скорость движения автобуса